

WIC1331

High Input Voltage Charger

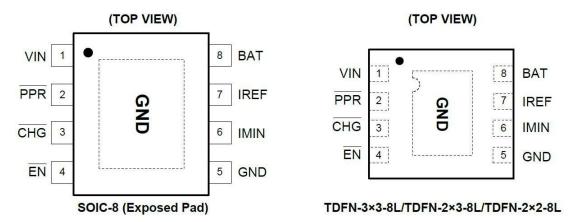
Description

The WIC1331 is a cost-effective, fully integrated high input voltage single-cell Li-lon battery charger. The charger uses a CC/CV charge profile required by Li-lon battery. The charger accepts an input voltage up to 28V but is disabled when the input voltage exceeds the OVP threshold, typically 6.8V (WIC1331A) or 10.5V (WIC1331B), to prevent excessive power dissipation. The 28V rating eliminates the over- voltage protection circuit required in a low input voltage charger.

The charge current and the end-of-charge (EOC) current are programmable with external resistors. When the battery voltage is lower than typically 2.55V, the charger preconditions the battery with typically 18% of the programmed charge current. When the charge current reduces to the programmable EOC current level during the CV charge phase, an EOC indication is provided by $\overline{\text{CHG}}$ pin, which is an open-drain output. An internal thermal foldback function protects the charger from any thermal failure.

Two indication pins (\overline{PPR} and \overline{CHG}) allow simple interface to a microprocessor or LEDs. When no adapter is attached or when disabled, the charger draws less than 1 μ A leakage current from the battery.

The WIC1331 is available in Green TDFN-3×3-8L, TDFN-2×3-8L, TDFN-2×2-8L and SOIC-8 (Exposed Pad) packages .


Features

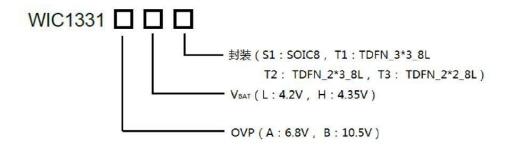
- Complete Charger for Single-Cell Li-Ion or Polymer Batteries
- Integrated Pass Element and Current Sensor
- No External Blocking Diode Required
- Low Component Count and Cost
- Programmable Charge Current
- Maximum Charge Current 1.1A
- Programmable End-of-Charge Current
- Charge Current Thermal Foldback for Thermal Protection
- 2.55V Trickle Charge Threshold
- 6.8V Input Over-Voltage Protection for WIC1331A
- 10.5V Input Over-Voltage Protection for WIC1331B
- Power Presence and Charge Indications
- Less than 1µA Leakage Current off the Battery When No Input Power Attached or Charger Disabled
- Available in Green TDFN-3×3-8L, TDFN-2×3-8L, TDFN-2×2-8L and SOIC-8 (Exposed Pad) Packages

Applications

- Mobile Phones
- Blue-Tooth Devices
- PDAs
- MP3 Players
- Stand-Alone Chargers
- Other Handheld Devices

Pin Configuration

Pin Function


Pin	Name	Function
1	VIN	Power Input. The absolute maximum input voltage is 28V. A 1µF or larger value X5R ceramic capacitor is recommended to be placed very close to the input pin for decoupling purpose. Additional capacitance may be required to provide a stable input voltage.
2	PPR	Open-drain Power Presence Indication. The open-drain MOSFET turns on when the input voltage is above the POR threshold but below the OVP threshold and off otherwise. This pin is capable to sink 15mA (MIN) current to drive an LED. The maximum voltage rating for this pin is 5.5V. This pin is independent on the EN pin input.
3	CHG	Open-drain Charge Indication. This pin outputs a logic low when a charge cycle starts and turns to high impedance when the end-of-charge (EOC) condition is qualified. This pin is capable to sink 15mA (MIN) current to drive an LED. When the charger is disabled, the CHG pin outputs high impedance.
4	EN	Enable Input. This is a logic input pin to disable or enable the charger. Drive to high to disable the charger. When this pin is driven to low or left floating, the charger is enabled. This pin has an internal $200k\Omega$ pull-down resistor.
5、9	GND	System Ground.
6	IMIN	End-of-Charge (EOC) Current Programming Pin. Connect a resistor between this pin and the GND pin to set the EOC current. The EOC current I_{MIN} can be programmed by the following equation: $I_{MIN} = 9700/R_{IMIN}(mA)$
		where R_{IMIN} is in $k\Omega$.
7	IREF	Charge-Current Programming and Monitoring Pin. Connect a resistor between this pin and the GND pin to set the charge current limit determined by the following equation: $I_{REF} = 12150/R_{IREF}(mA)$
		where R_{IREF} is in $k\Omega$.
8	BAT	Charger Output Pin. Connect this pin to the battery. A 1µF or larger X5R ceramic capacitor is recommended for decoupling and stability purposes. When the EN pin is pulled to logic high, the BAT output is disabled.

Absolute Maximum Ratings

SYMBOL	Item	Rating	UNIT
V_{IN}	Input Voltage	-0.3 to 30	V
Votherpin	Other Pins	-0.3 to 6.0	V
P _D	Power Dissipation@T _A =25°C ((SOIC-8)	1.111	W
TJ	Junction Temperature	150	°C
T _{stg}	Storage Temperature Range	-65 to +150	°C
T∟	Lead Temperature (Soldering,10sec)	260	°C

Label Information

MODEL	$V_{BAT}(V)$	V _{OVP} (V)	PACKAGE DESCRIPTION	ORDER NUMBER
		6.8V	SOIC8	WIC1331ALS1
		6.8V	TDFN-3*3-8L	WIC1331ALT1
		6.8V	TDFN-2*3-8L	WIC1331ALT2
	4.2V	6.8V	TDFN-2*2-8L	WIC1331ALT3
		10.5V	SOIC8	WIC1331BLS1
		10.5V	TDFN-3*3-8L	WIC1331BLT1
		10.5V	TDFN-2*3-8L	WIC1331BLT2
		10.5V	TDFN-2*2-8L	WIC1331BLT3
WIC1331		6.8V	SOIC8	WIC1331AHS1
		6.8V	TDFN-3*3-8L	WIC1331AHT1
		6.8V	TDFN-2*3-8L	WIC1331AHT2
	4.35V	6.8V	TDFN-2*2-8L	WIC1331AHT3
		10.5V	SOIC8	WIC1331BHS1
		10.5V	TDFN-3*3-8L	WIC1331BHT1
		10.5V	TDFN-2*3-8L	WIC1331BHT2
		10.5V	TDFN-2*2-8L	WIC1331BHT3

Recommended Operating Conditions

Item	Range	Unit
Junction Temperature	-40~125	$^{\circ}$ C
Air Temperature	-40~85	$^{\circ}$

Electrical Characteristics

 V_{IN} = 5V, R_{IMIN} = 243k Ω , T_A = +25°C, unless otherwise noted.

SYMBOL	PARAMETER		CONDITIONS	MIN	TYP	MAX	UNITS
RECOMMEND	ED OPERATING CONDI	TIONS		•			
VIN	Maximum Supply Vol	Itage				28	V
WIC1331A	Operating Supply Vol	ltage		4.55		6.10	V
WIC1331B	Operating Supply Vol	ltage		4.55		9.35	V
V _{POR_RISE}	POR Threshold		VIN Rising	3.21	3.95	4.55	V
V_{POR_FALL}	POR Threshold		VIN Falling	2.86	3.60	4.35	V
V _{OVP} -6.8	OVP threshold		V_{BAT} =4.3 V_{γ} R_{IREF} =120 $k\Omega$	6.1	6.8	7.26	V
V _{OVP} -10.5	OVP threshold		V_{BAT} =4.3 V_{P} R_{IREF} =120 $k\Omega$	9.35	10.5	11.15	V
V _{OVPHYS} -6.8	OVP threshold Hysteresis			140	220	300	mV
V _{OVPHYS} -10.5	OVP threshold Hysteresis			245	340	430	
STANDBY CUF				_			
IQ_STANDBY	VIN Supply Curre	nt	V _{BATT} =4.5V,EN=High		200	275	uA
I_Q	VIN Supply Curre		V _{BATT} =4.5V,EN=Low		270	320	uA
I _{BAT_SLEEP}	Sleep Model Leaka Current	ige			1	5	uA
				4.152	4.2	4.248	V
V _{BATT}	V _{BATT} Constant Volta	age ———	0℃ to 85℃, I _{LOAD} =0mA	4.305	4.35	4.395	V
T _{FOLD}	Over Current Foldback Thresho				115		$^{\circ}$ C
	PGB/CHGSB Leakage Current			20			mA
V_{PRE}	Preconditioning Cha Threshold Voltage		V_{BATT} Rising, R_{IREF} =120 k Ω	2.4	2.55	2.7	V
V _{PRE_HYS}	Preconditioning Volt Hysteresis	age	V _{BATT} Falling,R _{IREF} =120 kΩ	20	100	190	mV
R _{DS(ON)}	ON Resistance		V _{BAT} =4.3V, R _{IREF} =10 kΩ, Charge Current=500mA		500		mΩ
V_{IREF}	IREF Pin Voltage		$V_{BAT}=3.8V$, $R_{IREF}=120 \text{ k}\Omega$		1.215		V
I _{REF}	Adjustable Charge Cu Range		SOIC8	10		1100	mA
	Constant Charge Cui	rrent	V_{BAT} =3.8 V , R_{IREF} =24.3 $k\Omega$	440	500	560	mA
	_		V _{BAT} =3.8V,I _{REF} >500mA		10		%
I _{REF_ACCURACY}	Constant Charge Current		V _{BAT} =3.8V,100mA≤I _{REF} ≤500mA		15		%
TREF_ROSOTRIOT	Accuracy		V _{BAT} =3.8V,10mA≤I _{REF} ≤100mA		20		%
I_{TRK}	Trickle Charge Curr	ent	V_{BAT} =2.4 V , R_{IREF} =24.3 k Ω	75	90	105	mA
	Table Of Co.		V _{BAT} =3.8V,I _{REF} >500mA		15		%
I _{TRK_ACCURACY}	Trickle Charge Curr	ent	V _{BAT} =3.8V,100mA≤I _{REF} ≤500mA		20		%
	Accuracy		V _{BAT} =3.8V,10mA≤I _{REF} ≤100mA		25		%
I _{MIN}	End-of-Charge Curr	ent	R_{IREF} =24.3k Ω , R_{IMIN} =243k Ω	35	40	45	mA
			I _{MIN_SETTING} =2mA	0.5	2	3.5	mA
I _{MIN_ACCURACY}	EOC Current Accur	асу	I _{MIN_SETTING} =5mA	3	5	7	mA
	·		I _{MIN_SETTING} >10mA		10		%
	EOC Rising Thresh		R _{IREF} =24.3 kΩ	315	370	435	mA
	EN Pin Pull Dowr Resistance	า			200		kΩ
V _{IH}	EN Voltage Logic	c-High		1.5			V
V_{IL}	Logi	c-Low				0.4	

NOTES:

- 1. The 4.5V VBAT is selected so that the PPR output can be used as the indication for the offset comparator output indication. If the VBAT is lower than the POR threshold, no output pin can be used for indication.
- 2. The charge current can be affected by the thermal foldback function if the IC under the test setup cannot dissipate the heat.

Functional Description

Operation

The WIC1331 charges a Li-lon battery using a CC/CV profile. The constant current I_{REF} is set with the external resistor R_{IREF} and the constant voltage is fixed at 4.2V/4.35V. If the battery voltage is below a typical 2.55V trickle charge threshold, the WIC1331 charges the battery with a trickle current until the battery voltage rises above the trickle charge threshold. When the battery voltage reaches 4.2V/4.35V, the charger enters a CV mode. Figure 3 shows the typical charge waveform after the power is on.

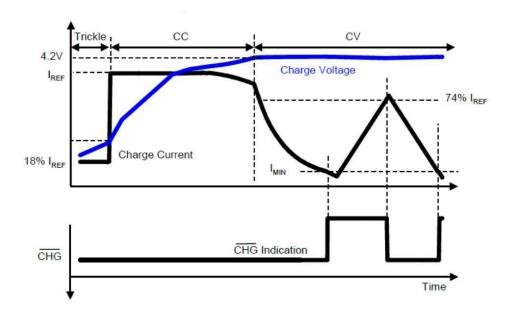


Figure 1.typical charge waveform

PPR Indication

The PPR pin is an open-drain output to indicate the presence of the AC adapter. Whenever the input voltage is higher than the POR threshold, the PPR pin turns on the internal open-drain MOSFET to indicate a logic low signal.

CHG Indication

The $\overline{\text{CHG}}$ is an open-drain output ,The MOSFET turns off when the EOC current is reached. The MOSFET turns on When the Charge Function is normal.

EN Input

 $\overline{\text{EN}}$ is an active-low logic input to enable the charger. Drive the EN pin to low or leave it floating to enable the charger. This pin has a 200k Ω internal pull-down resistor so when left floating, the input is equivalent to logic low.

Over Voltage Protection

The WIC1331 accepts an input voltage up to 28V but disables charging when the input voltage exceeds the OVP threshold, typically 6.8V for WIC1331A and 10.5V for WIC1331B, to protect against unqualified or faulty AC adapters.

Preconditioning Charge Current

If the battery voltage is below a typical 2.55V trickle charge threshold, the WIC1331 charges the battery with a trickle current of 18% of IREF until the battery voltage rises above the trickle charge threshold.

Constant Charge Current Model

Connect a resistor between IREF pin and the GND pin to set the charge current limit determined by the following equation:

$$I_{REF} = 12150/R_{IREF}(mA)$$

where RIREF is in $k\Omega$.

Constant Charge Voltage Model

Connect a resistor between this IMIN and the GND pin to set the EOC current. The EOC current IMIN can be programmed by the following equation:

$$I_{MIN} = 9700/R_{IMIN}(mA)$$

where R_{IMIN} is in $k\Omega$.

After the EOC is reached, the charge current has to rise to typically 74% I_{REF} for the CHG pin to turn on again

Thermal Foldback

The thermal foldback function starts to reduce the charge current when the internal temperature reaches a typical value of +115°C.

Application Circuit

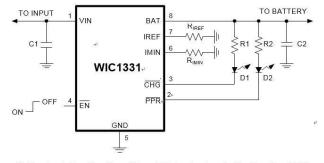
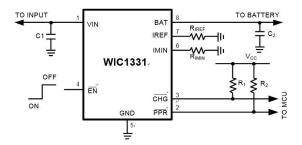
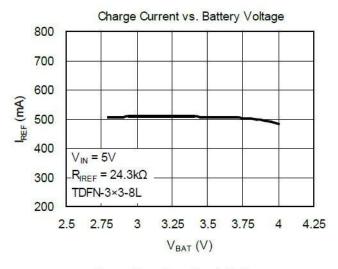
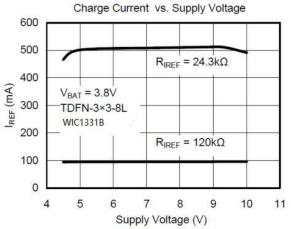
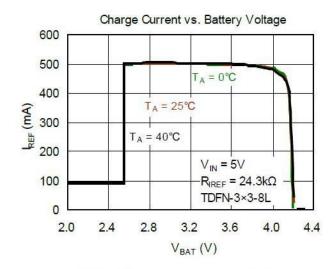
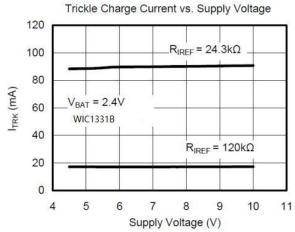
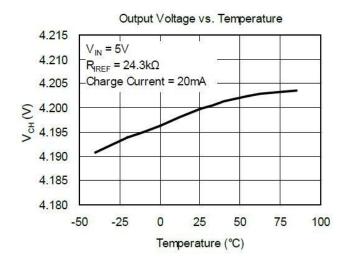
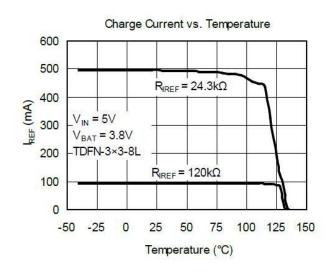


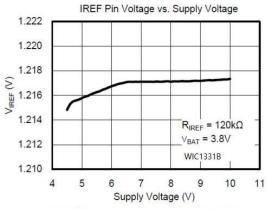
Figure 1. Typical Application Circuit Interfacing to Indication LEDs

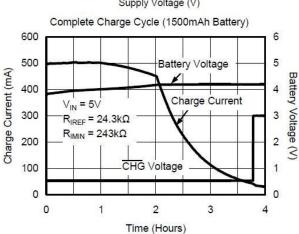





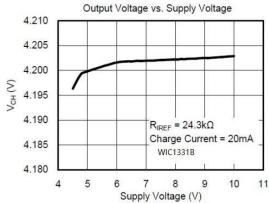

Figure 2. Typical Application Circuit with the Indication Signals Interfacing to an MCU

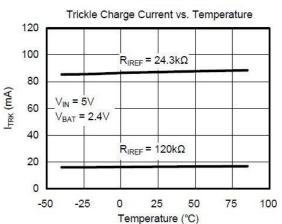

Typical Performance Characteristics

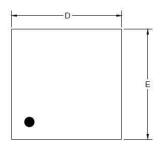


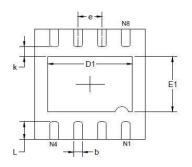


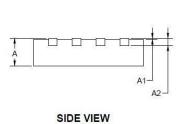


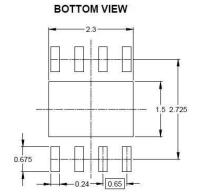




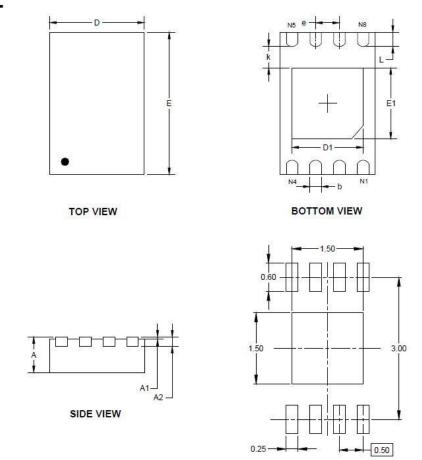





Package Information

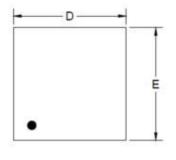

TDFN-3×3-8L

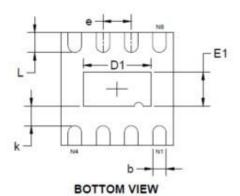
TOP VIEW

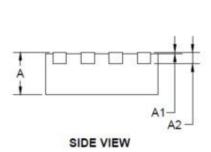


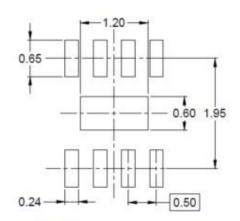
RECOMMENDED LAND PATTERN (Unit: mm)

Symbol		nsions meters	Dimensions In Inches	
	MIN	MAX	MIN	MAX
Α	0.700	0.800	0.028	0.031
A1	0.000	0.050	0.000	0.002
A2	0.203	REF	0.008	REF
D	2.900	3.100	0.114	0.122
D1	2.200	2.400	0.087	0.094
E	2.900	3.100	0.114	0.122
E1	1.400	1.600	0.055	0.063
k	0.200	MIN	0.008	3 MIN
b	0.180	0.300	0.007	0.012
е	0.650 TYP		0.026	TYP
L	0.375	0.575	0.015	0.023

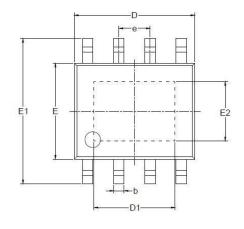

TDFN-2×3-8L

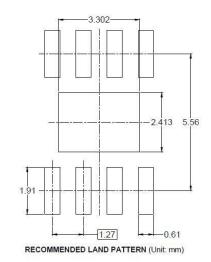

RECOMMENDED LAND PATTERN (Unit: mm)

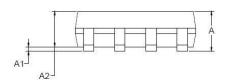

Symbol	Dimensions In Millimeters		Dimensions In Inches	
W. I	MIN	MAX	MIN	MAX
A	0.700	0.800	0.028	0.031
A1	0.000	0.050	0.000	0.002
A2	0.203	0.203 REF 0.		REF
D	1.924	2.076	0.076	0.082
D1	1.400	1.600	0.055	0.063
Е	2.924	3.076	0.115	0.121
E1	1.400	1.600	0.055	0.063
k	0.200	MIN	0.008	MIN
b	0.200	0.300	0.008	0.012
е	0.500 TYP		0.020	TYP
L	0.224	0.376	0.009	0.015

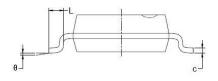

TDFN-2×2-8L

TOP VIEW






RECOMMENDED LAND PATTERN (Unit: mm)


Symbol	550,000,000	nsions meters	Dimensions In Inches	
50	MIN	MAX	MIN	MAX
Α	0.700	0.800	0.028	0.031
A1	0.000	0.050	0.000	0.002
A2	0.203	REF	0.008 REF	
D	1.900	2.100	0.075	0.083
D1	1.100	1.300	0.043	0.051
E	1.900	2.100	0.075	0.083
E1	0.500	0.700	0.020	0.028
k	0.200	MIN	0.008	MIN
b	0.180	0.300	0.007	0.012
е	0.500 TYP		0.020	TYP
L	0.250	0.450	0.010	0.018

SOIC-8 (Exposed Pad)

Symbol		nsions meters	Dimensions In Inches	
	MIN	MAX	MIN	MAX
Α		1.700		0.067
A1	0.000	0.100	0.000	0.004
A2	1.350	1.550	0.053	0.061
b	0.330	0.510	0.013	0.020
С	0.170	0.250	0.007	0.010
D	4.700	5.100	0.185	0.201
D1	3.202	3.402	0.126	0.134
E	3.800	4.000	0.150	0.157
E1	5.800	6.200	0.228	0.244
E2	2.313	2.513	0.091	0.099
е	1.27 BSC		0.050	BSC
L	0.400	1.270	0.016	0.050
θ	0°	8°	0°	8°

Contact Information

CYG WAYON CIRCUIT PROTECTION CO., LTD.

No.1001, Shiwan(7) Road, Pudong District, Shanghai, P.R.China.201202 Tel: 86-21-68960674 Fax: 86-21-50757680 Email: market@way-on.com

WAYON website: http://www.way-on.com

For additional information, please contact your local Sales Representative.

CYG ШAY∂N ® is registered trademark of Wayon Corporation.

Specifications are subject to change without notice.

The device characteristics and parameters in this data sheet can and do vary in different applications and actual device performance may vary over time. Users should verify actual device performance in their specific applications.